EQUAÇÃO GRAITACIONAL -ELETROFRACA QUÂNTICA DE GRACELI.




 

[   ] [] [[]   [ / ***=  = [          ] ω           . ]


Lagrangiano para as interações eletrofracas é dividido em quatro partes antes que a quebra de simetria eletrofraca se manifeste,

O termo  descreve a interação entre os três bósons vetoriais W e o bóson vetorial B,

Equação da ação

[editar | editar código-fonte]

O lagrangiano EDQ para um campo de spin-1/2 interagindo com o campo eletromagnético em unidades naturais dá origem à ação:[32]

Ação na EDQ




  MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.






                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,

  / ***=  = [          ] ω           .

Fase Berry na mecânica quântica

Em um sistema quântico no n-ésimo auto-estado, uma evolução adiabática do Hamiltoniano muda o sistema de tal forma que ele permanece no n-ésimo auto-estado do Hamiltoniano, ao mesmo tempo, obtém um fator de fase. Esta tem uma contribuição da evolução temporal do estado e outro da variação do auto-estado do Hamiltoniano que varia no tempo. O segundo termo corresponde à fase de Berry e, para variações não cíclicas do Hamiltoniano, pode ser ignorada por uma escolha diferente da fase associados com as auto-estados do Hamiltoniano em cada ponto na evolução.

No entanto, se a variação for cíclica, a fase Berry não pode ser cancelada e torna-se uma propriedade observável do sistema. A partir da equação de Schrödinger a fase de Berry  pode ser calculada por: [necessário esclarecer]

 
  / ***=  = [          ] ω           .

onde  parametriza o processo adiabático cíclico. O sistema segue um caminho fechado  no espaço de parâmetros. Uma revisão recente sobre os efeitos de fase geométricas em propriedades eletrônicas foi dada por Xiao, Chang e Niu. [4] A fase geométrica ao longo do caminho fechado  também pode ser calculada integrando a curvatura de Berry sobre a superfície delimitada por .

Fase geométrica e a quantização do movimento cyclotron

[editar | editar código-fonte]

Um elétron sujeito a um campo magnético  se move numa órbita circular (cyclotron)[1]. Classicamente, qualquer raio  de cyclotron é aceito. Já na mecânica quântica, apenas alguns níveis de energia, chamados de níveis de Landau são permitidos e já que  está relacionado com a energia do elétron, isso corresponde a valores quantizados de . A condição de quantização de energia obtida ao resolver a equação de Schrödinger é, por exemplo,  para elétrons livres ou  para elétrons no grafeno onde .[2] Apesar da derivação esses resultados não ser difícil, há uma forma alternativa de mostrá-los que dá uma intuição física sobre os níveis de Landau. Essa forma alternativa é baseada na condição semiclássica da condição de quantização de Bohr-Sommerfeld

  / ***=  = [          ] ω           .

que inclui a fase geométrica  adquirida pelo elétron quando ele executa seu movimento no espaço real ao longo do loop fechado da órbita do cyclotron.[8] Para um elétron livre,  enquanto  para elétrons no grafeno. Acontece que a fase geométrica está diretamente ligada  do elétron livre e a  para o elétron no grafeno.




Na física quântica, a amplitude de dispersão é a amplitude de probabilidade da saída onda esférica[1] em relação à onda plana de entrada no processo de dispersão do estado estacionário[2] .

Este processo de dispersão é descrito pela seguinte função de onda

 / ***=  = [          ] ω           .

onde  é o vetor de posição;  é a onda plana de entrada com o número de onda k ao longo do eixo z é a onda esférica de saída; θé o ângulo de dispersão; e  é a amplitude de espalhamento. A dimensão da amplitude de dispersão é o comprimento.


A amplitude de dispersão é uma amplitude de probabilidade; a secção transversal do diferencial como uma função de ângulo de dispersão é dado como o seu módulo quadrado[3],

 / ***=  = [          ] ω           .




Em física quântica, a Teoria de Regge é o estudo das propriedades analíticas de dispersão como função de momento angular. Por exemplo spin electrónico (elétrons) podem apresentar movimento de rotação em dois sentidos diferentes, por isso é que dois elétrons podem ocupar o mesmo nível ao mesmo tempo, ou 4 ou 8… . Elétrons e Quarks todos possuem Spin de 1/2 e Grávitons Spin 2[1]. Aplicando a matemática Função Beta foi possível explicar a presença dessas linhas retas, como sendo filamentos[2]. Assim nasceu a primeira teoria da corda chamada Primeira-quantificação da corda que se dividiram em cordas abertas e cordas fechadas. Cordas abertas têm menos modos de vibração que cordas fechadas, pois possuem as pontas livres, na corda fechada para manter as pontas fixas é necessário mais modos de vibração[3]. Esta teoria não-relativística foi desenvolvido por Tullio Regge, em 1957.

Pólos de Regge

[editar | editar código-fonte]

O exemplo mais simples dos pólos de Regge é fornecido pela abordagem mecânica quântica do potencial de Coulomb  ou, diferentemente, pelo tratamento mecânico quântico da ligação ou dispersão de um elétron de massa e carga elétrica  de um próton de massa  e carga . A energia  da ligação do elétron ao próton é negativa, enquanto que, para a dispersão, a energia é positiva. A fórmula para a energia de ligação é a expressão:

 / ***=  = [          ] ω           .

Considerada como uma função complexa de , essa expressão descreve no plano- complexo um caminho que é chamado de "trajetória de Regge". Assim, nesta consideração, o momento orbital pode assumir valores complexos.

As trajetórias de Regge podem ser obtidas para muitos outros potenciais, em particular também para o potencial de Yukawa[4].

As trajetórias de Regge aparecem como pólos da amplitude de dispersão[5] ou na matriz-S relacionada. No caso do potencial de Coulomb considerado acima, esta matriz-S é dada pela seguinte expressão:

 / ***=  = [          ] ω           .

onde  é a função gama, uma generalização de fatorial .

Esta função gama é uma função meromorfa do seu argumento com pólos simples em . Assim, a expressão para  (a função gama no numerador) possui pólos precisamente nesses pontos, que são dadas pela expressão acima para as trajetórias de Regge; por isso o nome pólos de Regge.




Na física quântica, a amplitude de dispersão é a amplitude de probabilidade da saída onda esférica[1] em relação à onda plana de entrada no processo de dispersão do estado estacionário[2] .

Este processo de dispersão é descrito pela seguinte função de onda

 / ***=  = [          ] ω           .

onde  é o vetor de posição;  é a onda plana de entrada com o número de onda k ao longo do eixo z é a onda esférica de saída; θé o ângulo de dispersão; e  é a amplitude de espalhamento. A dimensão da amplitude de dispersão é o comprimento.


A amplitude de dispersão é uma amplitude de probabilidade; a secção transversal do diferencial como uma função de ângulo de dispersão é dado como o seu módulo quadrado[3],

 / ***=  = [          ] ω           .




Para um sistema físico composto por partículas de spin zero, existe um potencial de Coulomb blindado que é conhecido como potencial de Yukawa. Tal pontencial é da forma

 / ***=  = [          ] ω           .

e que é, claramente, um potencial do tipo central. Na equação acima,  é uma constante (positiva) de acoplamento que configura a intensidade da força efetiva,  é a massa da partícula afetada pelo potencial,  é a velocidade da luz e  a constante de Planck. Naturalmente, podemos mostrar que o potencial  está associada a uma força sempre atrativa.

Comments

Popular posts from this blog