[   ] [] [[]   [ / ***=  = [          ] ω           . ]


Lagrangiano para as interações eletrofracas é dividido em quatro partes antes que a quebra de simetria eletrofraca se manifeste,

O termo  descreve a interação entre os três bósons vetoriais W e o bóson vetorial B,

Equação da ação

[editar | editar código-fonte]

O lagrangiano EDQ para um campo de spin-1/2 interagindo com o campo eletromagnético em unidades naturais dá origem à ação:[32]

Ação na EDQ




  MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.






                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,

  / ***=  = [          ] ω           .

Fase Berry na mecânica quântica

Em um sistema quântico no n-ésimo auto-estado, uma evolução adiabática do Hamiltoniano muda o sistema de tal forma que ele permanece no n-ésimo auto-estado do Hamiltoniano, ao mesmo tempo, obtém um fator de fase. Esta tem uma contribuição da evolução temporal do estado e outro da variação do auto-estado do Hamiltoniano que varia no tempo. O segundo termo corresponde à fase de Berry e, para variações não cíclicas do Hamiltoniano, pode ser ignorada por uma escolha diferente da fase associados com as auto-estados do Hamiltoniano em cada ponto na evolução.

No entanto, se a variação for cíclica, a fase Berry não pode ser cancelada e torna-se uma propriedade observável do sistema. A partir da equação de Schrödinger a fase de Berry  pode ser calculada por: [necessário esclarecer]

 
  / ***=  = [          ] ω           .

onde  parametriza o processo adiabático cíclico. O sistema segue um caminho fechado  no espaço de parâmetros. Uma revisão recente sobre os efeitos de fase geométricas em propriedades eletrônicas foi dada por Xiao, Chang e Niu. [4] A fase geométrica ao longo do caminho fechado  também pode ser calculada integrando a curvatura de Berry sobre a superfície delimitada por .

Fase geométrica e a quantização do movimento cyclotron

[editar | editar código-fonte]

Um elétron sujeito a um campo magnético  se move numa órbita circular (cyclotron)[1]. Classicamente, qualquer raio  de cyclotron é aceito. Já na mecânica quântica, apenas alguns níveis de energia, chamados de níveis de Landau são permitidos e já que  está relacionado com a energia do elétron, isso corresponde a valores quantizados de . A condição de quantização de energia obtida ao resolver a equação de Schrödinger é, por exemplo,  para elétrons livres ou  para elétrons no grafeno onde .[2] Apesar da derivação esses resultados não ser difícil, há uma forma alternativa de mostrá-los que dá uma intuição física sobre os níveis de Landau. Essa forma alternativa é baseada na condição semiclássica da condição de quantização de Bohr-Sommerfeld

  / ***=  = [          ] ω           .

que inclui a fase geométrica  adquirida pelo elétron quando ele executa seu movimento no espaço real ao longo do loop fechado da órbita do cyclotron.[8] Para um elétron livre,  enquanto  para elétrons no grafeno. Acontece que a fase geométrica está diretamente ligada  do elétron livre e a  para o elétron no grafeno.

Comments

Popular posts from this blog